C & B are switched so I'm not sure if that was a typo or not, but the answer is concentration!
Noble Gas. Metals have 1 or 2 Valence Electrons. Halogens have 7 Valence Electrons. Semi-Metals can have different amounts.
Answer:
992.302 K
Explanation:
V(rms) = 750 m/s
V(rms) = √(3RT / M)
V = velocity of the gas
R = ideal gas constant = 8.314 J/mol.K
T = temperature of the gas
M = molar mass of the gas
Molar mass of CO₂ = [12 + (16*2)] = 12+32 = 44g/mol
Molar mass = 0.044kg/mol
From
½ M*V² = 3 / 2 RT
MV² = 3RT
K = constant
V² = 3RT / M
V = √(3RT / M)
So, from V = √(3RT / M)
V² = 3RT / M
V² * M = 3RT
T = (V² * M) / 3R
T = (750² * 0.044) / 3 * 8.314
T = 24750000 / 24.942
T = 992.302K
The temperature of the gas is 992.302K
Note : molar mass of the gas was converted from g/mol to kg/mol so the value can change depending on whichever one you use.
Answer:
- <u><em>Sodium chloride</em></u>
Explanation:
The attached graph with a green and a red arrow facilitates the understanding of this explanation.
To read the <em>solubility </em>on the <em>graph</em>, you can start with the temperature, on the x-axis.
The red vertical arrow shows how, departing from the <em>40ºC temperature</em> on the x-axis, you intersect the<em> solutibility curve </em>of sodium chloride at a height (y-axis) corresponding to <em>60 g/100cm³ of water</em> (follow the green horizontal arrow).
Hence, <em>sodium chloride is the salt that can dissolve at a concentration of about 60g/100cm³ of water at 40ºC.</em>
Answer:
Reaction a: chemical, reaction b: nuclear
Explanation: