Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.

This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that
. Hence, relation between their wavelengths will be calculated as follows.
... (1)
... (2)
Equating the equations (1) and (2) as follows.

Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
From the mechanism shown, the major product of the reaction is (S)-(+)-2-octanol.
<h3>What is an SN2 reaction?</h3>
An SN2 reaction is one in which there is an inversion of configuration and the attack of the nucleophile occurs from behind the substrate.
As shown in the mechanism attached here, the major product of this reaction is (S)-(+)-2-octanol.
Learn more about SN2 reaction:brainly.com/question/14080839
#SPJ1
So platinum is a transition metal. In general transition metals are reducers, which means they can give the electrons they have, to the sodium atoms. Also in chemistry we look at sub orbitals rather that shells(2,8,8). So due to the energy from heat, the d orbital split as electrons move to a higher energy level. Some of the electrons are given to the sodium ions and therefore the flame changes colour to yellow.
The excitation of the electrons is caused by them getting energy and so moving up an energy level. This energy is released and the electron returns to it's original state. The energy released, however, does not release in the same direction, but in different/various directions. Therefore the colour of the light changes as some energy is released in the surrounding.
Question 1:
(a) Sulfurous acid: H2SO3
Sulfuric acid: H2SO4
(b) Nitrous acid: H2NO2
Nitric acid: H2NO3
Question 2:
To calculate the pH, based on concentration of H+ ions, there is one formula:

So the pH of this solution is

(the solution is basic).