Answer:
The answer to your question is 0.79 moles of SnCl₂
Explanation:
Data
moles of SnCl₂ = ?
mass of FeCl₃ = 85.3 g
excess Sn
Balanced chemical reaction
2 FeCl₃ + 3 Sn ⇒ 3 SnCl₂ + 2 Fe
Process
1.- Convert the mass of FeCl₃ to moles
Molar mass of FeCl₃ = 56 + (35.5 x 3)
= 56 + 106.5
= 162.5 g
Use proportions to find the moles of FeCl₃
162.5 g -------------------- 1 mol
85.3 g ------------------- x
x = (85.3 x 1) / 162.5
x = 0.525 moles
2.- Find the number of moles SnCl₂
2 moles of FeCl₃ ----------------- 3 moles of SnCl₂
0.525 moles ----------------- x
x = (0.525 x 3) / 2
x = 0.79 moles of SnCl₂
Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer:
The value of
is 0.02495.
Explanation:
Initial concentration of
gas = 0.675 M
Initial concentration of
gas = 0.973 M
Equilibrium concentration of mustard gas = 0.35 M

initially
0.675 M 0.973 M 0
At equilibrium ;
(0.675-0.35) M (0.973-2 × 0.35) M 0.35 M
The equilibrium constant is given as :
![K_c=\frac{[S(CH_2CH_2Cl)_2]}{[SCl_2][C_2H_4]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BS%28CH_2CH_2Cl%29_2%5D%7D%7B%5BSCl_2%5D%5BC_2H_4%5D%5E2%7D)


The relation between
and
are :
where,
= equilibrium constant at constant pressure = ?
= equilibrium concentration constant =14.45
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 20.0°C =20.0 +273.15 K=293.15 K
= change in the number of moles of gas = [(1) - (1 + 2)]=-2
Now put all the given values in the above relation, we get:


The value of
is 0.02495.
<span>Mimicupcakes650 Beginner answered 5 minutes ago ... What would happen to the equilibrium mixture if the chlorine gas was allowed to escape? (explain your answer ) from Gabbymarriott. 1 answer ... Describe the physical and chemical properties of the raft that would be important to ensure your safety. from Dustyy.</span>