Answer:
answer will be 3.08 mol ig.....
The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4
there are 8 moon phases.
They are - First quarter, waxing crescent, new, waning crescent, third quarter, Waning gibbous, full, and waxing gibbous