Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.
Answer:
a) 2.53 * 10^-2 m/s
b) -4.78 * 10^-2 m/s
c) 1.21 * 10^-1 m/s
Explanation:
Given data :
Mass of block = 10 kg
Measuring 250mm on each side
a) calculate the speed when a force of 75N is applied to pull block upwards
F = f + W sin∅ ( equation for applying the force of equilibrium condition in the x axis ) ----- ( 1 )
f ( friction force )= ( 16400v * 6.25 *10^-2) = 1025 v
F ( force applied ) = 75
W ( weight of block ) = 10 * 9.81 = 98.1 N
∅ = 30°
input values into equation 1
V =
= 2.53 * 10^-2 m/s
b) Speed when no force is applied on the block
F = f + W sin∅
F = 0
f = 1025 V
W = 98.1 N
∅ = 30°
hence V =
= - 4.78 * 10^-2 m/s
c) when a force is applied to push block down the incline
F = f + W sin∅ ----- ( 3 )
F = 75 N
f = 1025 V
W = 98.1 N
∅ = 30°
input values into equation 3 considering the fact that the weight of the block is acting in the opposite direction
75 = 1025 V - 98.1 ( sin 30° )
V =
= 1.21 * 10^-1 m/s
Relative time
seems to fit with this type of question.
Hope i Helped!
Answer:
it wont fly away
Explanation:
depending how tight the knott and find it is going to be stuck to the pole