Answer:
The net force acting on the bobsled is 300 N.
Explanation:
Given:
Mass of the bobsled is, 
Displacement is, 
Initial speed is,
m/s
Final speed is,
m/s
Net acceleration acting on the bobsled can be determined using the following Newton's equation of motion:

Plug in all the given values and solve for acceleration,
.

Now, as per Newton's second law, net force is the product of mass and acceleration. So,

Therefore, the net force acting on the bobsled is 300 N.
Answer: the rarest element is Francium. J is not on the periodic table. also Dmitri Mendeleev proposed the periodic table.
Explanation: Kinda looked the last one up.
Answer:
the magnitude of the displacement after 5s is 137.31 m.
Explanation:
Given;
initial velocity of the projectile, u = 60 m/s
angle of projection, θ = 60°
time of motion, t = 5s
the vertical component of the velocity, 
The magnitude of the displacement after 5s is calculated as;

Therefore, the magnitude of the displacement after 5s is 137.31 m.
Answer:
132 N
Explanation:
Given that a 1.1 kg hammer strikes a nail. Before the impact, the hammer is moving at 4.5 m/s; after the impact it is moving at 1.5 m/s in the opposite direction. If the hammer is in contact with the nail for 0.025 s, what is the magnitude of the average force exerted by the hammer on the nail
From Newton 2nd law of motion,
Change in momentum = impulse.
Change in momentum = m( V - U )
Substitute all the parameters into the formula
Change in momentum = 1.1 ( 4.5 - 1.5 )
Change in momentum = 1.1 × 3
Change in momentum = 3.3 kgm/s
Impulse = Ft
That is,
Ft = 3.3
Substitute time t into the formula above
F × 0.025 = 3.3
F = 3.3 / 0.025
F = 132 N
Therefore, the magnitude of the average force exerted by the hammer on the nail is 132 N.
Answer:
so easy add the subtract then multiplay the add
Explanation: