<u>Answer</u>:
The coefficient of static friction between the tires and the road is 1.987
<u>Explanation</u>:
<u>Given</u>:
Radius of the track, r = 516 m
Tangential Acceleration
= 3.89 m/s^2
Speed,v = 32.8 m/s
<u>To Find:</u>
The coefficient of static friction between the tires and the road = ?
<u>Solution</u>:
The radial Acceleration is given by,




Now the total acceleration is
=>
=>
=>
=>
The frictional force on the car will be f = ma------------(1)
And the force due to gravity is W = mg--------------------(2)
Now the coefficient of static friction is

From (1) and (2)


Substituting the values, we get


Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.
Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
Answer:
The equivalent stiffness of the string is 8.93 N/m.
Explanation:
Given that,
Spring stiffness is





According to figure,
and
is in series
We need to calculate the equivalent
Using formula for series


Put the value into the formula


k and
is in parallel
We need to calculate the k'
Using formula for parallel

Put the value into the formula


,k' and
is in series
We need to calculate the equivalent stiffness of the spring
Using formula for series

Put the value into the formula


Hence, The equivalent stiffness of the string is 8.93 N/m.
Kepler's second law of planetary motion<span> describes the speed of a </span>planet<span> traveling in an elliptical orbit around the sun. It states that a line between the sun and the </span>planetsweeps equal areas in equal times. Thus, the speed of theplanet<span> increases as it nears the sun and decreases as it recedes from the sun.</span>