Answer:
<em>Answer A. Fission, steam, turbine, electricity, cool water</em>
Explanation:
<u>Nuclear Energy Production
</u>
Nuclear energy is produced by splitting uranium atoms in a process called fission. This generates heat and it's managed to produce steam, which later is used by a turbine generator to generate electricity. The heat must be taken out of the system, so a cooling process, usually involving water is the final step.
Because nuclear power plants don't burn fuel, they are known as clean energy sources.
Answer A. Fission, steam, turbine, electricity, cool water
Answer:

Explanation:
Given:
height above the horizontal form where the ball is hit, 
angle of projectile above the horizontal, 
initial speed of the projectile, 
<u>Firstly we find the </u><u>vertical component of the initial velocity</u><u>:</u>



During the course of ascend in height of the ball when it reaches the maximum height then its vertical component of the velocity becomes zero.
So final vertical velocity during the course of ascend:
Using eq. of motion:
(-ve sign means that the direction of velocity is opposite to the direction of acceleration)

(from the height where it is thrown)
<u>Now we find the time taken to ascend to this height:</u>



<u>Time taken to descent the total height:</u>
- we've total height,


- during the course of descend its initial vertical velocity is zero because it is at the top height, so



<u>Now the total time taken by the ball to hit the ground:</u>



Answer:
At 3.86K
Explanation:
The following data are obtained from a straight line graph of C/T plotted against T2, where C is the measured heat capacity and T is the temperature:
gradient = 0.0469 mJ mol−1 K−4 vertical intercept = 0.7 mJ mol−1 K−2
Since the graph of C/T against T2 is a straight line, the are related by the straight line equation: C /T =γ+AT². Multiplying by T, we get C =γT +AT³ The electronic contribution is linear in T, so it would be given by the first term: Ce =γT. The lattice (phonon) contribution is proportional to T³, so it would be the second term: Cph =AT³. When they become equal, we can solve these 2 equations for T. This gives: T = √γ A .
We can find γ and A from the graph. Returning to the straight line equation C /T =γ+AT². we can see that γ would be the vertical intercept, and A would be the gradient. These 2 values are given. Substituting, we f ind: T =
√0.7/ 0.0469 = 3.86K.
Explanation:
In the picture.
I hope that it's a clear solution.