To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
Answer:
A. W = 6875.0 J.
B. W = -14264.6 J.
Explanation:
A. The work done by the rider can be calculated by using the following equation:

Where:
: is the force done by the rider = 25 N
d: is the distance = 275 m
θ: is the angle between the applied force and the distance
Since the applied force is in the same direction of the motion, the angle is zero.

Hence, the rider does a work of 6875.0 J on the bike.
B. The work done by the force of gravity on the bike is the following:
The force of gravity is given by the weight of the bike.
And the angle between the force of gravity and the direction of motion is 180°.
The minus sign is because the force of gravity is in the opposite direction to the motion direction.
Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.
I hope it helps you!
A wave is basically propagation of disturbances—that is, deviations from a state of rest or equilibrium—from place to place in a regular and organized way. Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties.
Answer:
gamma rays < X-ray < ultraviolet ray < visible light < infrared < radio wave
Explanation:
given light form,
A) radio waves,B) infrared,C) visible light,D) ultraviolet,E) X-rays,F) gamma rays
we know,
wavelength of radio wave = 10000 Km
wavelength of infrared = 700 nanometers (nm) to 1 millimeter (mm)
wavelength of visible light = 380 to 740 nm
wavelength of ultraviolet ray = 10 nm to 400 nm
wavelength of X-ray = 0.01 to 10 nm
wavelength of gamma rays = 100 picometer
so, the order of rays.
gamma rays < X-ray < ultraviolet ray < visible light < infrared < radio wave