<h2> F = k×

</h2>
Explanation:
- The attractive or repulsive forces which act between any two charged species is an electric force.
- The electric force depends on the distance between the charged species and the amount of charge which can be calculated by the formula given as follows
F = k×
where, K is coulombs constant, which is equal to - 9 x10^9 
- The unit for K is newtons square meters per square coulombs.
- This is known as Coulomb's Law.
Ans:
12500 N/C
Explanation:
Side of square, a = 2.42 m
q = 4.25 x 10^-6 C
The formula for the electric field is given by

where, K be the constant = 9 x 10^9 Nm^2/c^2 and r be the distance between the two charges
According to the diagram
BD = 
where, a be the side of the square
So, Electric field at B due to charge at A


EA = 6531.32 N/C
Electric field at B due to charge at C


Ec = 6531.32 N/C
Electric field at B due to charge at D


ED = 3265.66 N/C
Now resolve the components along X axis and Y axis
Ex = EA + ED Cos 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
Ey = Ec + ED Sin 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
The resultant electric field at B is given by


E = 12500 N/C
Explanation:
<span>Since the trains area headed in completely opposite directions, the rate at which they gain distance from each other is simply equal to the sum of the magnitudes of their velocities, in this case 85 + 75 = 160 miles per hour. Therefore, the amount of time it will take for them to be 352 miles apart is 352/160 = 2.2 hours, or 2 hours and 12 minutes.</span>
Answer:
Decrease the slit separation, increase the distance of the screen from the slits, and increase the wavelength.
Explanation:
The distance
from the central band to the first bright band is given by

where
is the wavelength of light (or any particle),
is the distance to the screen, and
is the slit separation.
From this equation we see that, by increasing the wavelength
, increasing the distance from the screen
, and decreasing the slit separation
, we increase the distance between the first bright band and the central band.
Therefore, the 2nd choice "<em>Decrease the slit separation, increase the distance of the screen from the slits, and increase the wavelength.</em>" is correct.
==> The total mass resting on the table is (5 kg + 3 kg) = 8 kg.
==> The total weight of that mass is (8 kg) x (9.8 m/s) = 78.4 newtons
==> The boxes are stacked. So the table doesn't know if the weight on it is coming from one box, 2 boxes, 3 boxes, or 100 boxes in a stack. The table only knows that there is a downward force of 78.4 newtons on it.
==> The table stands in a Physics classroom, and it soaks up everything it hears there. It knows that every action produces an equal and opposite reaction, and that forces always occur in pairs.
Ever since the day it was only a pile of lumber out behind the hardware store in the rain, the table has known that in order to maintain the good reputation of tables all over the world, it must resist the weight of anything placed upon it with an identical upward force. This is the normal thing for all good tables to do, up to the ultimate structural limit of their materials and construction, and it is known as the "normal force".
So the table in your question provides a normal force of 78.4 newtons. (d)