<span>The atmosphere is a thin layer of gases that surrounds the Earth. It seals the planet and protects us from the vacuum of space. It protects us from electromagnetic radiation given off by the Sun and small objects flying through space such as meteoroids.</span><span>
So it's like a blanket protecting us but it has air hole/patches where sunlight can get through</span>
At the boiling point, the vapor pressure of a liquid is equal to the atmospheric pressure.
Answer: Solution A : ![[H_3O^+]=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
Solution B : ![[OH^-]=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
Solution C : ![[OH^-]=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration and pOH is calculated by taking negative logarithm of hydroxide ion concentration.

![[H_3O^+][OH^-]=10^{-14}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%5BOH%5E-%5D%3D10%5E%7B-14%7D)
a. Solution A: ![[OH^-]=3.33\times 10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.33%5Ctimes%2010%5E%7B-7%7DM)
![[H_3O^+]=\frac{10^{-14}}{3.33\times 10^{-7}}=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B3.33%5Ctimes%2010%5E%7B-7%7D%7D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
b. Solution B : ![[H_3O^+]=9.33\times 10^{-9}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D9.33%5Ctimes%2010%5E%7B-9%7DM)
![[OH^-]=\frac{10^{-14}}{9.33\times 10^{-9}}=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B9.33%5Ctimes%2010%5E%7B-9%7D%7D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
c. Solution C : ![[H_3O^+]=5.65\times 10^{-4}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D5.65%5Ctimes%2010%5E%7B-4%7DM)
![[OH^-]=\frac{10^{-14}}{5.65\times 10^{-4}}=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B5.65%5Ctimes%2010%5E%7B-4%7D%7D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
We will balance equation which describes the reaction between sulfuric acid and sodium bicarbonate: as follows.
Next we will calculate how many moles of
are present in 85.00 mL of 1.500 M sulfuric acid.
As, Molarity = 
1.500 M = 
n = 0.1275 mol
Now set up and solve a stoichiometric conversion from moles of
to grams of
. As, the molar mass of
is 84.01 g/mol.
= 21.42 g
So unfortunately, 15.00 grams of sodium bicarbonate will "not" be sufficient to completely neutralize the acid. You would need an additional 6.42 grams to complete the task.