<span>Answer:
(16.2 g C2H6O2) / (62.0678 g C2H6O2/mol) / (0.0982 kg) = 3.9704 mol/kg = 3.9704 m
a.)
(3.9704 m) x (1.86 °C/m) = 7.38 °C change
0.00°C - 7.38 °C = - 7.38 °C
b.)
(3.9704 m) x (0.512 °C/m) = 2.03 °C change
100.00°C + 2.03 °C = 102.03 °C</span>
37.8 g CH2Br2 X (1 mol CH2Br2 / 173.83 g) = 4.60X10^-3 mol CH2Br2
<span>4.60X10^-3 mol CH2Br2 X (2 mol Br / 1 mol CH2Br2) X 6.02X10^23 atoms/mol = 5.54X10^21 bromine atoms</span>
The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.
No, because humans are much more complex than peas.