The answer is C -5/16 is -0.3 which means -5/16 cant be greater than or less than -0.3 so A and D are wrong and -2/3 is less than -5/16 which leaves us with C!
Answer: The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Step-by-step explanation: this is the same paragraph The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Answer:
Line 1 to Line 2: Distributive Property
Line 2 to Line 3: Commutative Property of Multiplication
Line 3 to Line 4: Associative Property of Multiplication
Step-by-step explanation:
I’m pretty sure it would be interquartile range, since range is the measure that measures variation within a data set.
The x-value increases by a factor of 5 from 1.6 to 8 between the two points. Because the variation is inverse, the y-value must decrease by a factor of 5 between the two points.
6/5 = 1.2
The second point is (8, 1.2), corresponding to the 4th selection.