1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
14

A car with a total mass of 1800 kg (including passengers) is driving down a washboard road with bumps spaced 4.9 m apart. The ri

de is roughest—that is, the car bounces up and down with the maximum amplitude—when the car is traveling at 5.7 m/s. What is the spring constant of the car's springs? Express your answer to two significant figures and include the appropriate units.
Physics
2 answers:
Drupady [299]3 years ago
5 0

Answer:

k = 9.6 x 10^5 N/m or 9.6 kN/m

Explanation:

First, we need to use the expression to calculate the spring constant which is:

w² = k/m

Solving for k:

k = w²*m

To get the angular velocity:

w = 2πf

The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:

f = V/x

f = 5.7 / 4.9 = 1.16 Hz

Now the angular velocity:

w = 2π*1.16

w = 7.29 rad/s

Finally, solving for k:

k = (7.29)² * 1800

k = 95,659.38 N/m

In two significant figures it'll ve 9.6 kN/m

kondor19780726 [428]3 years ago
3 0

Answer:

k=96.16 kN/m

Explanation:

Maximum amplitude is achieved, when the system operated in the resonance- frequency of the bumps is equal to the natural frequency of the spring-mass system.

Frequency of the bumps, as an input force:

f=V/d, where d- distance between the bumps and V- velocity of the resonance.

From the natural frequency of the spring- mass system, we can get:

f^{2}=\frac{1}{2\pi }  \frac{k}{m}

For the given problem, then the value of k, can be found as:

k=2\pi mf^{2}=2\pi  m (\frac{V}{d}) ^{2} =96158 N/m

You might be interested in
A flywheel with a diameter of 1.63 m is rotating at an angular speed of 79.9 rev/min. (a) What is the angular speed of the flywh
Studentka2010 [4]

Answer:

(a) 8.362 rad/sec

(b) 6.815 m/sec

(c) 9.446 rad/sec^2

(d) 396.22 revolution

Explanation:

We have given that diameter d = 1.63 m

So radius r=\frac{d}{2}=\frac{1.63}{2}=0.815m

Angular speed N = 79.9 rev/min

(a) We know that angular speed in radian per sec

\omega =\frac{2\pi N}{60}=\frac{2\times 3.14\times 79.9}{60}=8.362rad/sec

(b) We know that linear speed is given by

v=r\omega =0.815\times 8.362=6.815m/sec

(c) We have given final angular velocity \omega _f=675rev/min

And \omega _i=79.9rev/min

Time t = 63 sec

Angular acceleration is given by \alpha =\frac{\omega _f-\omega _i}{t}=\frac{675-79.9}{63}=9.446rad/sec^2

(d) Change in angle is given by

\Theta =\frac{1}{2}(\omega _i+\omega _f)t=\frac{1}{2}(675+79.9)\times 1.05=396.22rev

7 0
3 years ago
Potential difference is measured in which units?<br> volts<br> amps<br> currents<br> watts
viktelen [127]
It is Volt
First option
4 0
2 years ago
Read 2 more answers
Being able to see a square in the middle of the image despite not having lines to form a square represents the Gestalt principle
vredina [299]

Answer: The correct answer for the blank is -

C. closure.

Gestalt principle of closure describes how we perceive complete figures even when the information that form the figure is missing.

This is due the fact that our brain responds to the familiar patterns inspite of getting incomplete information.

For instance, in the given question, we are able to perceive an image of square in the center despite not having actual lines that form a square.

Thus, it represents principle of closure.

7 0
3 years ago
Read 2 more answers
An object start from rest with a constant acceleration of 8.00 m/s^2 along straight line.
san4es73 [151]
I’ll say c Bc it make more since to find the travel distance
7 0
3 years ago
On average, how many stars would we have to search before we would expect to hear a signal? assume there are 500 billion stars i
Keith_Richards [23]

We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.

To find out the number of stars that we will need to search to find a signal, we need to use the following formula:

  • total of stars/civilizations
  • 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)

This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.

Note: This question is incomplete; here is the complete question.

On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.

Assuming 100 civilizations existed.

Learn more about stars in: brainly.com/question/2166533

7 0
2 years ago
Other questions:
  • under what circumstances can the average velocity of a moving object be zero when its average speed is 50 km/hr ?
    14·1 answer
  • so I know you can solve this either by using Vox or Voy. I'm getting 3.08s when using Vox and 3.14s for Voy way. For Voy I'm usi
    8·1 answer
  • If you change the mass of a moving object, you change its ??
    11·1 answer
  • Describe what a planetesimal is. Is it related to a protoplanet?
    12·1 answer
  • A spherically-spreading EM wave comes from a 104.0 W source. At a distance of 9.6 m, what is the intensity of the wave?
    8·1 answer
  • A golfer hits a golf ball with a club head velocity of 94 mph. Mass of golf club head (m): 190 g Mass of golf ball (ms): 46 g Co
    11·1 answer
  • A racing car reaches a speed of 42 m/s. It then begins a uniform negative acceleration, using its parachute and braking system,
    13·1 answer
  • What is the value of 9682 when rounded to three significant figures
    9·1 answer
  • A 0.060 kg ball hits the ground with a speed of –32 m/s. The ball is in contact with the ground for 45 milliseconds and the grou
    12·1 answer
  • A moving car has 2000 J of kinetic energy. If the speed doubles, how much kinetic energy would it have?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!