The current in the ideal diode with forward biased voltage drop of 65V is 132.6 mA.
To find the answer, we have to know more about the ideal diode.
<h3>
What is an ideal diode?</h3>
- A type of electronic component known as an ideal diode has two terminals, only permits the flow of current in one direction, and has less zero resistance in one direction and infinite resistance in another.
- A semiconductor diode is the kind of diode that is used the most commonly.
- It is a PN junction-containing crystalline semiconductor component that is wired to two electrical terminals.
<h3>How to find the current in ideal diode?</h3>
- Here we have given with the values,

- We have the expression for current in mA of the ideal diode with forward biased voltage drop as,

Thus, we can conclude that, the current in mA of the ideal diode with forward biased voltage drop of 65 V is 132.6.
Learn more about the ideal diode here:
brainly.com/question/14988926
#SPJ4
Answer:
The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Explanation:
Answer:
<u>Valence electrons are always located in the outer most energy level.</u>
Explanation:
Valence electrons are the ones that are involved in chemical bonds. In order to take part in a chemical bonding, the outermost/valence electron needs to be involved. Thus, the answer is <u>Valence electrons are always located in the outer most energy level.</u>
Answer:
$84
Explanation:
The coefficient of performance (COP) show the relationship between the power (kW) output of the heat pump and the power (kW) input to the compressor.
The heater consumed by the heater is 1200 kWh.
For a heat pump with a COP of 2.4, the electric input needed to produce an output of 1200 kWh is:
Electric input to heat pump = 1200 / 2.4 = 500 kWh
That means that supplying a heat pump with 500 kWh produces an output of 1200 kWh
The amount of power saved = power consumed by heater - power consumed by heat pump = 1200 - 500 = 700 kWh
Money saved = $0.12/kWh * 700 kWh = $84