Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
D. Mineral and fossil matches from tests done on different continents.
Answer:
Top 10 Residential Uses for Solar Energy.
01. Solar Powered Ventilation Fans.
02. Solar Heating for Your Swimming Pool.
03. Solar Water Heater.
04. Solar House Heating.
05.Solar Powered Pumps.
06. Charging Batteries With Solar Power.
07. Power Your Home With Photo-Electric.
08. Solar Energy For Cooking.
09. Solar energy for outdoor lighting.
10. Solar transportation.
The work done on the puck is 96 J
Explanation:
According to the work-energy theorem, the work done on the hockey puck is equal to the change in kinetic energy of the puck.
Mathematically:
where
is the final kinetic energy of the puck, with
m = 2 kg being the mass of the puck
v = 10 m/s is the final speed
is the initial kinetic energy of the puck, with
u = 2 m/s being the initial speed of the puck
Substituting numbers into the equation, we find the work done by the player on the puck:
Learn more about work and kinetic energy:
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/6536722
#LearnwithBrainly