Answer:
(i)
, (ii)
, (iii) 
Explanation:
(i)
and
represent the points where particle has a velocity of zero and spring reach maximum deformation, Given the absence of non-conservative force and by the Principle of Energy Conservation, the position where particle is at maximum speed is average of both extreme positions:

(ii) Maximum accelerations is reached at
and
.

(iii) Greatest net forces exerted on the particle are reached at
and
.

What will happen if the sample is the
Featured snippet from the web
When a sample of solid, liquid, or gas matter heats up, it expands. When matter gets hot, its particles gain kinetic energy. ... When matter cools down, its particles lose kinetic energy. The decreased kinetic energy lets the particles come closer together. The kinetic theory of matter can be used to explain how solids, liquids and gases are interchangeable as a result of increase or decrease in heat energy. ... If it is cooled the motion of the particles decreases as they lose energy.
Answer:
100nm-280nm
Explanation:
Ultraviolet rays (UV) are part of the electromagnetic spectrum. It goes from 10nm to 400nm wavelengths, they are shorter than visible light, thus it's impossible to see by a human eye, and larger than X-rays (used in many medical applications and harmful when long-exposed).
According to its wavelengths, UV can be divided in different types:
UVA: long wave UV (315nm-400nm)
UVB: medium-wave UV (280nm-315nm)
UVC: short wave UV (100nm-280nm)
Therefore, UVC comprises wavelengths between 10nm and 280nm.