We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Answer:
V = 2.87 m/s
Explanation:
The minimum speed required would be that at which the acceleration due to gravity is negated by the centrifugal force on the water.
Thus, we simply need to set the centripetal acceleration equal to gravity and solve for the speed V using the following equation:
Centripetal acceleration = V^2 / r
where r is the distance of water from the pivot or shoulder.
For our case, r will be 0.65 + 0.19 = 0.84 m
and solving the above equation we get:
9.81 = V^2 / 0.84
V^2 = 8.2404
V = 2.87 m/s
Calm, sunny days with wind moving away from the center.