Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.
Answer:
0.25 m.
Explanation:
We'll begin by calculating the spring constant of the spring.
From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:
Force (F) = 0.1 N
Extention (e) = 0.125 m
Spring constant (K) =?
F = Ke
0.1 = K x 0.125
Divide both side by 0.125
K = 0.1/0.125
K = 0.8 N/m
Therefore, the force constant, K of spring is 0.8 N/m
Now, we can obtain the number in gap 1 in the diagram above as follow:
Force (F) = 0.2 N
Spring constant (K) = 0.8 N/m
Extention (e) =..?
F = Ke
0.2 = 0.8 x e
Divide both side by 0.8
e = 0.2/0.8
e = 0.25 m
Therefore, the number that will complete gap 1is 0.25 m.
A substance changes from liquid to gas
Answer:
P = 96 J
Explanation:
Given that,
Weight of the book, W = mg = 8 N
It is placed at a height of 12 m
We need to find the potential energy of the book. The potential energy of an object is given by the formula as follows :
E = mgh
mg = Weight

So, the potential energy of the book is 96 J.