Answer:
The pressure is 
The temperature is 
Explanation:
Generally Gibbs free energy is mathematically represented as

Where E is the enthalpy
PV is the pressure volume energy (i.e PV energy)
S is the entropy
T is the temperature
For stability to occur the Gibbs free energy must be equal to zero
Considering Diamond
So at temperature of T = 300 K

making P the subject

Now substituting 300 K for T , 2900 J for E ,
for V and
for S


The negative sign signifies the direction of the pressure
Given that 
making T the subject

Substituting into the equation


If only I was smart then I could help you :/ no but like for real im madddd dumb sorry :(
<u>Answer:</u>
Both the objects A and B will have the same acceleration.
<u>Explanation
:</u>
The objects will have the same acceleration as both are under free fall condition. When objects are under the free fall condition, the only force that acts on the object is its weight.
Weight is the force acting on a body of some mass, and the formula for finding the weight of a body is- Weight = mass × acceleration due to gravity(g).
Therefore, here the different weight is due to the difference masses of both bodies, and not due to the different acceleration values.
(1,500 meters) x (1 sec/330 meters) =
(1,500 / 330) (meters-sec/meters) =
4.55 seconds
Answer:
v = 3(m1 - 2m2)/(m1 + m2)
Explanation:
Parameters given:
Velocity of first toy car with mass m1, u1 = 3 m/s (taking the right direction as the positive axis)
Velocity of second toy car with mass m2, u2 = -6 m/s (taking the left direction as the negative x axis)
Using conservation of momentum principle:
Total initial momentum = Total final momentum
m1*u1 + m2*u2 = m1*v1 + m2*v2
Since they stick together after collision, they have the same final velocity.
m1*3 + (m2 * -6) = m1*v + m2*v
3m1 - 6m2 = (m1 + m2)v
v = (3m1 - 6m2) / (m1 + m2)
v = 3(m1 - 2m2) / (m1 + m2)