Answer:
Step-by-step explanation:ffcrrer
Answer:
dependent, 39/155
Step-by-step explanation:
Since the checkers are not replaced, the events are dependent since the number of checkers in the bag when you pick the second time depends on the first pick.
31 checkers—13 red and 18 black.
P(red) = red/ total
= 13/31
Keep the checker
Then 30 checkers—12 red and 18 black.
P(black) = black/ total
= 18/30 = 3/5
P ( red, keep,black) = 13/31 *3/5
39/155
Answer:
not completely sure but I think its B
<span>1.
Photo description: A picture of the Eiffel tower, to be stuck on a mat.
Dimensions (including units): 4 in x 6 in
2. Since 2x would be added to each dimension:
Length: 6 + 2x (inches)
Width: 4 + 2x (inches)
3. Area: A = LW = (6+2x)(4+2x) square inches
4. F: (6)(4) = 24, O: (6)(2x) = 12x, I: (2x)(4) = 8x, L: (2x)(2x) = 4x^2
Polynomial expression: Adding the FOIL terms up: 4x^2 + 20x + 24
5. The area should be in square inches, since we multiplied length (in inches) by width (in inches).
6. Multiply factors using the distribution method:
(6+2x)(4+2x) = 6(4+2x) + 2x(4+2x) = 24 + 12x + 8x + 4x^2 = 24 + 20x + 4x^2
This is identical to the expression in Part 4.
7. x: 24 + 20x + 4x^2
If x = 1.0 in: Area = 24 + 20(1) + 4(1)^2 = 48 in^2
If x = 2.0 in: Area = 24 + 20(2) + 4(2)^2 = 80 in^2
8. If a white mat costs $0.03 per square inch and a black mat costs
$0.05 per square inch, determine the cost of each size of black and
white mat.
x Total area of mat Cost of white mat Cost of black mat
1.0 in, A = 48 in^2, (0.03)(48) = $1.44, (0.05)(48) = $2.40
2.0 in, A = 80 in^2, (0.03)(80) = $2.40, (0.05)(80) = $4.00
9. The cheapest option would be the white mat with 1-in margins on all sides, which would cost $1.44. Without any further criteria on aesthetics or size limitations, this is the most viable option.</span>