Answer:
1.5min
Explanation:
To solve the problem it is necessary to take into account the concepts related to Period and Centripetal Acceleration.
By definition centripetal acceleration is given by

Where,
V = Tangencial velocity
r = radius
With our values we know that


Therefore solving to find V, we have:



For definition we know that the Time to complete are revolution is given by




Answer:
The magnetic field through the wire must be changing
Explanation:
According to Faraday's law, the induced emf, ε in a metallic conductor is directly proportional to the rate of change of magnetic flux,Φ through it. This is stated mathematically as ε = dΦ/dt.
Now for the wire, the magnetic flux through it is given by Φ = ABcosθ where A = cross-sectional area of wire, B = magnetic field and θ = angle between A and B.
So, dΦ/dt = dABcosθ/dt
Since A and B are constant,
dΦ/dt = ABdcosθ/dt = -(dθ/dt)ABsinθ
Since dθ/dt implies a change in the angle between A and B, since A is constant, it implies that B must be rotating.
So, <u>for an electric current (or voltage) to be produced in the wire, the magnetic field must be rotating or changing</u>.
I included things
Hope this helps!
Answer:
The average recoil force on the gun during that 0.40 s burst is 45 N.
Explanation:
Mass of each bullet, m = 7.5 g = 0.0075 kg
Speed of the bullet, v = 300 m/s
Time, t = 0.4 s
The change in momentum of an object is equal to impulse delivered. So,

For 8 shot burst, average recoil force on the gun is :

So, the average recoil force on the gun during that 0.40 s burst is 45 N.