Answer:
This immense mountain range began to form between 40 and 50 million years ago, when two large landmasses, India and Eurasia, driven by plate movement, collided. ... Artist's conception of the 6,000-km-plus northward journey of the "India" landmass (Indian Plate) before its collision with Asia (Eurasian Plate).
Explanation:
Answer:negative charge, small relative mass, and found outside the nucleus
Explanation:
The electron is one of the subatomic particles. It is negatively charged and has a relatively small or somewhat negligible mass. It is found outside the nucleus on the orbits. The electron is bound to the nucleus by electrostatic forces of attraction in the Bohr's model of the atom.
Answer:
1.)1.265+or minus 0.0006m
2).0.71%
Explanation:
See attached file
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)
1) Keep track of data
2) be able to clearly analyse the data
I hope this was the answer you seek!