<span>There are three temperature scales in use today, Fahrenheit, Celsius and Kelvin. Fahrenheit temperature scale is a scale based on 32 for the freezing point of water and 212 for the boiling point of water, the interval between the two being divided into 180 parts.</span>
It's a projectile near the earth under the influence of gravity only.
M1 v1 = (m1 + m2)v2.
All of the exponents should be lowered to the bottom right of the letters.
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
By definition, we have that the gravitational force is given by:

Where,
G: gravitational constant
m1: mass of object number 1
m2: mass of object number 2
r: distance between both objects.
Therefore, for the gravitational force to increase, the following conditions must be met:
1) Increase the mass of the objects so that the numerator of the equation is greater.
2) Decrease the distance between the objects so that the denominator of the equation is smaller.
Answer:
A change that will always result in an increase in the gravitational force between two objects is:
increasing the masses of the objects and decreasing the distance between the objects