Answer:
4.1 atm = 3,116 mmHg = 415.4 kPa
Explanation:
According to Boyle's law, as volume is increased the pressure of the gas is decreased. That can be expressed as:
P₁ x V₁= P₂ x V₂
Where P₁ and V₁ are the initial pressure and volume respectively, and P₂ and V₂ are final pressure and volume, respectively.
From the problem, we have:
V₁= 50.0 L
V₂= 68.0 L
P₂= 3.0 atm
Thus, we calculate the initial pressure as follows:
P₁= (P₂ x V₂)/V₁= (3.0 atm x 68.0 L)/(50.0 L)= 4.08 atm ≅ 4.1 atm
To transform to mmHg, we know that 1 atm= 760 mmHg:
4.1 atm x 760 mmHg/1 atm = 3,116 mmHg
To transform to kPa we use: 1 atm= 101.325 kPa
4.1 atm x 101.325 kPa = 415.4 kPa
As chlorine has seven electrons in its outer most shell so to complete its octet it has to gain an electron and when it gain an electron it will become an anion that is negatively charged
so in my opinion and what a conclude is that the option B is correct for the above statement
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
Answer:
C
Explanation:
The chemical energy stored in the match changed to thermal energy and light energy.
Because the cord is wrapped in rubber or plastic and they are not good conductors