Answer:
Explanation:
Assuming the ground is level as well.
F = ma
a = F/m
a = (2000 - 350) / 1500
a = 1.1 m/s²
Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude

Answer:
The bottom of the sea is 25 m below sea level.
Explanation:
Given data
Mass = 6.1 × 

We know that Buoyant force on the tank is equal to gravity force of the tank.



1020 ×
= 6.1 × 
= 598039.21 
We know that
= W × L × H
598039.21 = 300 × 80 × H
H = 25 m
Therefore the bottom of the sea is 25 m below sea level.
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248