Answer:
thanks for the points liar
Explanation:
Answer:
2.4 m/s
Explanation:
Given:
Velocity of the object moving north = 2.1 m/s
Velocity of the river moving eastward = 1.2 m/s
The resultant velocity is the vector sum of the velocities of object and river.
Since the directions of velocity of object and river are perpendicular to each other, the magnitude of the resultant velocity is obtained using Pythagoras Theorem.
The velocities are the legs of the right angled triangle and the resultant velocity is the hypotenuse.
The magnitude of the resultant velocity (R) is given as:

Therefore, the resultant velocity has a magnitude of 2.4 m/s.
Explanation:
For this problem, use the first law of thermodynamics. The change in energy equals the increase in heat energy minus the work done.
ΔU=Q−W
We are not given a value for work, but we can solve for it using the force and distance. Work is the product of force and displacement.
W=FΔx
W=3N×2m
W=6J
Now that we have the value of work done and the value for heat added, we can solve for the total change in energy.
ΔU=Q−W
ΔU=10J−6J
ΔU=4J
Answer is 4J
i think this may help you very much
Answer:
0.8
Explanation:
The two spheres have the same potential, V.
Let the radius of the larger sphere be R and the radius of the smaller sphere be r,
=> R = 4r
Let the charge on the smaller sphere be q. Hence, the larger sphere will have charge Q - q.
The potential of the smaller sphere will be:

The potential of the larger sphere will be:

Inputting R = 4r,

Since
,

=> Q - q = 4q
=> 5q = Q
q = 0.2Q
The fraction of the charge Q that rests on the smaller sphere is 0.2
The charge of the larger sphere is:
Q - q = Q - 0.2Q = 0.8Q
∴ The fraction of the total charge Q that rests on the larger sphere is 0.8
Answer:
the answer should be the third statement