This it true because in the triangle of the transformation from solid, liquid, and gas
:0<span />
pH of 0.048 M HClO is 4.35.
<u>Explanation:</u>
HClO is a weak acid and it is dissociated as,
HClO ⇄ H⁺ + ClO⁻
We can write the equilibrium expression as,
Ka = ![$\frac{[H^{+}] [ClO^{-}] }{[HClO]}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BClO%5E%7B-%7D%5D%20%20%7D%7B%5BHClO%5D%7D)
Ka = 4.0 × 10⁻⁸ M
4.0 × 10⁻⁸ M = 
Now we can find x by rewriting the equation as,
x² = 4.0 × 10⁻⁸ × 0.048
= 1.92 × 10⁻⁹
Taking sqrt on both sides, we will get,
x = [H⁺] = 4.38 × 10⁻⁵
pH = -log₁₀[H⁺]
= - log₁₀[ 4.38 × 10⁻⁵]
= 4.35
Answer:
B
Explanation:
B It’s a physical change because the water and the salt kept their original properties.
Answer:
Sry i am unable to see the attached picture but i hope this helps
Explanation:
There are a couple of ways to prepare a buffer solution of a specific pH. In the first method, prepare a solution with an acid and its conjugate base by dissolving the acid form of the buffer in about 60% of the volume of water required to obtain the final solution volume
Answer:
0.2g
Explanation:
All radiodecay follows the 1st order decay equation
A = A₀e^-kt
A => Activity at time (t)
A₀ => Initial Activity at time = 0
k => decay constant for isotope
T => time in units that match the decay constant
Half-Life Equation => kt(½) = 0.693 => k = 0.693/34 min = 0.0204min¹
A = A₀e^-kt = (26g)e^-(0.0204/min)(238min) = (26g)(0.0078) = 0.203g ~ 0.2g (1 sig fig).