Answer:
C₁₂H₂₂O₁₁ and CH₃OH
Explanation:
Sucrose and methyl alcohol are nonelectrolytes. They do not ionize or conduct a current in aqueous solution.
HC₂H₃O₂ is a weak electrolyte. It produces only a few ions and is a poor conductor of electricity in aqueous solution.
HC₂H₃O₂ + H₂O ⇌ H₃O⁺ + C₂H₃O₂⁻
H₂SO₄ is a strong electrolyte. Its first ionization is complete, so it is a good conductor of electricity in aqueous solution.
H₂SO₄ + H₂O ⟶ H₃O⁺ + HSO₄⁻
Answer:
Less
Explanation:
The hydronium from the HCl is used to neutralize the bicarbonate in the baking soda. The hydronium is the acid and the bicarbonate ion is the base while the sodium and chloride ions are pH-neutral. Since theres a 1:1 mole ratio of hydronium to HCl and bicarbonate to sodium bicarbonate, it would require less HCl to neutralize a less concentration baking soda solution.
Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.
Answer:
- Sodium Bicarbonate (β-3) + Vinegar
- Lead Nitrate + Potassium iodide
Explanation:
Baking Soda and vinegar cause an explosion, in which the bicarbonate and vinegar are replaced by nitrate (∨) and oxide (Ф.) When you combine lead nitrate (Δω) with potassium iron, you also see the ingredients you combined disappear, which shall cause a replace reaction
This goes from longest to shortest wavelengths
Radio waves, microwaves, infrared, light, ultra violet, X-rays, gamma rays