Matter.
A force of attraction that holds atom together
<span>When atoms react they form a chemical bond which is defined as a force of attraction that holds atom together. A force of attraction is defined as a kind of force that draws two or more objects together regardless of distance. There are two major categories of forces of attraction, one is intramolecular and intermolecular. Intramolecular forces is the presence of forces in atoms internally. While intermolecular is the force by which the force that is existent in two or more elements. </span>
A reaction in which bonds are created is usually associated with the Release of energy.
What are the various types of bonds?
There are three sorts of bonds:
1. Electrovalent or electrovalent bond
2. chemical bond
3. dative bond
Electrovalent or electrovalent bond are formed when one or more electrons are transferred from one atom to another.
Covalent bonds are formed when the atoms during a molecule share an equal number of electrons.
A dative bond is one in which both electrons in a shared pair come from the same atom.
Now, atoms tend to stabilize once they form chemical bonds, releasing energy within the process. Energy is released because there's a higher level of stability associated with a low energy level.
Hence, a reaction in which bonds are created is usually associated with the release of energy.
To know more about chemical bonds go to the given link:
brainly.com/question/20584851
#SPJ4
Answer:
2,909 M
Explanation:
molair mass is of.ethylene is 26,04 g/mol
first you need to calculate how much mL 3 kg is. You can do this by using the density of ethylene: 1,1 g/mL.
3000 g x 1.1 = 3300 mL = 3,3 L
Next you need to calculate the amount of moles:
250 g / 26,04 g/mol = 9,60 mol
Now you can calculate the molarity:
9,6/3.3 = 2,909 M
I don't know the answer for the second question. I'm sorry.
Answer:
Lonic.an electron will be transferred from potassium to the chlorine atom