Answer: C. High surface tension
Explanation:
Water has high specific heat as it require high heat to raise the temperature of 1 g of water through
.
Surface tension is the net downward force acting on the surface of liquids due to the cohesive nature of liquids.
Water molecules are bonded by strong hydrogen bonding between the hydrogen atom and the electronegative oxygen atom making it polar. Thus water molecules present on the surface are strongly attracted by the molecules present below the surface and thus act as a stretched membrane.
The surface acquires a minimum surface are and thus acquire a spherical shape.
In order to make the dissolution of the solid compound in water to occur at a faster rate, Samuel could do the following:
1. Break down the solid into tiny particles: breaking down the solid into tiny particles increases the surface area of the solid and thus increase the quantity of the substance that comes in contact with the solvent per time, this leads to a faster dissolution of the solid.
2. Stir the liquid with iron rod: Samuel can increase the dissolution rate of the substance by stirring it continuously with iron rod.
3. Increasing the temperature:Samuel could also increase the rate of dissolution of the substance by increasing the temperature of the water.
A. NaCl(s) and O2(g)
B. 2NaClO3(s) —> 2NaCl(s) + 3O2(g)
C. moles NaClO3 = 100 g / 106.44 g/mol = 0.939 mol NaClO3
D. 0.939 mol NaCl (because the NaClO3 and NaCl are in a 1 to 1 ratio)
E. grams NaCl = 0.939 mol • 58.44 g/mol = 54.9 g NaCl
F. moles of O2 = 0.939 mol NaClO3 • (3 mol O2 / 2 mol NaClO3) = 1.41 mol O2
G. grams of O2 = 1.41 mol • 32 g/mol = 45.1 g O2
H. Percent yield = 10/45.1 • 100% = 22.2% yield
6 CO₂ + 6 H₂O (chlorophyll + sunlight) ⇒ C₆H₁₂O₆ + 6 O₂
the reaction takes place in presence of sunlight and chlorophyll ..
CO₂ is oxidized and forms Glucose . And oxygen is evolved in this process.
I would say D. Hope I helped, sorry if I didn't. :)