To solve this problem we can use following equation.
v =u + at
Where v is the final velocity (m/s), u is the initial velocity (m/s), a is the acceleration (m/s²) and t is the time taken (s).
v = 7 m/s
u = 4 m/s
a = ?
t = 5 s
By applying the equation, we can get
7 m/s = 4 m/s + a x 5 s
3 m/s = a x 5 s
a = 0.6 m/s²
Hence, the acceleration is 0.6 m/s² towards north.
Answer is "C".
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa
Answer:
"Thermometer C, because it measures accurately in the ones place."
Explanation:
Thermometer D measures using tens place. Since we are measuring the liquid's temperature at 47 degrees Celsius, the most appropriate thermometer would measure in ones place, not tens place.
Hope this helps! :)
Thunderstorms between Tampa and titusville
Answer:
The answer is: the body contains chemicals called buffers that resist changes in pH
When you exercise vigorously, the muscle will produce more carbon dioxide which will makes the blood more acidic. Human blood have some mechanism that could prevent the blood pH to stray further from the optimal range. One of the buffer that keep carbon dioxide acidity would be sodium bicarbonate.
Explanation:
<h2>
it just be like that sometimes my dude</h2>