Answer:
The maximum safe depth in salt water is 3758.2 m.
Explanation:
Given that,
Diameter = 20 cm
Radius = 10 cm
Thickness = 9.0 cm
Force 
Inside pressure = 1.0 atm
We need to calculate the area
Using formula of area

Put the value into the formula


We need to calculate the pressure
Using formula of pressure

Put the value into the formula



We need to calculate the maximum depth
Using equation of pressure


Put the value into the formula


Hence, The maximum safe depth in salt water is 3758.2 m.
Answer:
105.8 m
46 m/s
Explanation:
From the time the rocket is launched to the time it reaches its maximum height:
v = 0 m/s
a = -10 m/s²
t = 9.2 s / 2 = 4.6 s
Find: Δy and v₀
Δy = vt − ½ at²
Δy = (0 m/s) (4.6 s) − ½ (-10 m/s²) (4.6 s)²
Δy = 105.8 m
v = at + v₀
0 m/s = (-10 m/s²) (4.6 s) + v₀
v₀ = 46 m/s
Musical notation is the term used to describe the common system of signs used to denote the relative duration of long and short sounds.
<h3>What is a musical notation?</h3>
Music notation, often known as musical notation, is any technique used to graphically express audibly perceived music performed with instruments or sung by a human voice using written, printed, or other symbol-based representations. This includes notation for periods of silence like rests.
Throughout history, many civilizations have used different types of notation, and the knowledge of early musical notation is generally sparse. Different musical genres and cultural groups employ various methods of music notation, even during the same time period, such as the 2010s. For instance, while sheet music with staves and note-heads is the most popular method for professional classical musicians, the Nashville Number System is the main method used by professional country music session musicians.
To know more about musical notation, visit:
brainly.com/question/2639260
#SPJ4
The answer is d my friend :)
Answer:
This is because motion is intended to occur but at zero acceleration. It means at a constant velocity, henceFor that to happen the pulling force F must exactly equal the frictional force Fk .