Answer:
Total momentum before collision
P1 =.4 * 3.5 = 1.4 ignoring units here
Total momentum after collision
P2 = .6 * V - .4 * .7 = .6 V - .28
.6 V = 1.4 + .28 momentum before = momentum after
V = 2.8 cm/sec
In 5 sec V moves 2.8 cm/sec * 5 sec = 14 cm
It's false i hope this helps :)
1- interaction between 2 objects
2- action- reaction force pairs
Answer:
450
Explanation:
Given,
Mass= 100kg
Velocity= 3 m/s
Kinetic Energy= ?
Kinetic Energy= 1/2 mv^2
= 1/2× 100× 3^2
= 1/2× 900
= 450.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPED</em><em> </em><em>:</em><em>)</em>
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V