In deciding whether to use a technology, people must analyze the good effects and the bad effects of using a certain technology. People should weigh the consequences well. In deciding, it should be kept in the mind that the goal of using something should benefit people in a good way.
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836
Answer:
v=12.5 i + 12.5 j m/s
Explanation:
Given that
m₁=m₂ = m
m₃ = 2 m
Given that speed of the two pieces
u₁=- 25 j m/s
u₂ =- 25 i m/s
Lets take the speed of the third mass = v m/s
From linear momentum conservation
Pi= Pf
0 = m₁u₁+m₂u₂ + m₃ v
0 = -25 j m - 25 i m + 2 m v
2 v=25 j + 25 i m/s
v=12.5 i + 12.5 j m/s
Therefore the speed of the third mass will be v=12.5 i + 12.5 j m/s
Answer:
They would land at the same time
Explanation:
They would land at the same exact time.
As weird, impossible and unbelievable as it appears. When in a vacuum, every weight, body and material when released from the same height would land on the ground at the same time. This also means that like in the question, a feather and a ball would land at the same time. And just for illustrations as well, a feather and a car would land at the same time as well.
Answer:
199.0521 Will be the answer