Answer for number 1. Weight is the force of gravity. It acts in a downward direction—toward the center of the Earth.
Lift is the force that acts at a right angle to the direction of motion through the air. Lift is created by differences...
Thrust is the force that propels a flying machine in the direction of motion. Engines produce thrust.
2. For an airplane to takeoff, thrust must be greater than drag and lift must be greater than weight. To maintain level flight, lift must equal weight and thrust must equal drag. For landing, thrust must be less than drag, and lift must be less than weight.
3.When the forward forces are bigger than the opposing forces, you speed up (accelerate). As you go faster, the force of air resistance pushing back on you increases. Eventually, the forces become balanced (the forward forces are the same size as the opposing forces). Once the forces become balanced, your speed stays the same.
4.Every object on Earth has weight, a product of both gravity and mass. A Boeing 747-8 passenger airliner, for instance, has a maximum takeoff weight of 487.5 tons (442 metric tons), the force with which the weighty plane is drawn toward the Earth.
The little dipper is located in Ursa Minor you would also get a clue because... Minor and little
1) Chemical reaction (thermal decomposition)
2NaHCO3 (s) ---> Na2CO3 (s) + H2O (g) + CO2(g)
2) Reasoning
The lost of mass is due to the lost of the gases H2O and CO2.
So, you can calculate the mass of Na2CO3 obtained from 1.000 g NaHCO3, and the difference will be the mass lost.
2) Convert 1.000 g of NaHCO3 to number of moles
molar mass NaHCO3: 1*23g/mol + 1*1g/mol + 1*12g/mol + 3*16g/mol = 84 g/mol
number of moles = mass in grams / molar mass = 1.000 g / 84 g/mol = 0.01190 moles
3) Use therotecial molar ratios:
2 moles NaHCO3 : 1 mol Na2CO3
=> 0.01190 mol NaHCO3 / x = 2 mol NaHCO3 / 1mol Na2CO3
=> x = 1mol Na2CO3 * 0.01190 mol NaHCO3 / 2 mol NaHCO3
=> x = 0.00595 mol Na2CO3
4) Convert 0.0595 mol Na2CO3 to mass
molar mass Na2CO3: 2*23g/mol + 1*12g/mol + 3*16g/mol = 106 g/mol
mass in grams = number of moles * molar mass = 0.00595 mol * 106 g/mol = 0.6307 g
5) lost mass
1.000g - 0.6307g = 0.3693 g
Answer: 0.3693 g
Answer:
Q sln = 75.165 J
Explanation:
a constant pressure calorimeter:
∴ m sln = m Ba(OH)2 + m HCl
∴ molar mass Ba(OH)2 = 171.34 g/mol
∴ mol Ba(OH)2 = (0.06 L)(0.3 mol/L) = 0.018 mol
⇒ mass Ba(OH)2 = (0.018 mol)(171.34 g/mol) = 3.084 g
∴ molar mass HCl = 36.46 g/mol
∴ mol HCl = (0.06 L)(0.60 mol/L) = 0.036 mol
⇒ mass HCl = (0.036 mol)(36.46 g/mol) = 1.313 g
⇒ m sln = 3.084 g + 1.313 g = 4.3966 g
specific heat (C):
∴ C sln = C H2O = 4.18 J/g°C
∴ ΔT = 26.83°C - 22.74°C = 4.09°C
heat absorbed (Q):
⇒ Q sln = (4.3966 g)(4.18 J/g°C)(4.09°C)
⇒ Q sln = 75.165 J