Answer:
680 g/m is the molar mass for the unknown, non electrolyte, compound.
Explanation:
Let's apply the formula for osmotic pressure
π = Molarity . R . T
T = T° absolute (in K)
R = Universal constant gases
π = Pressure
Molarity = mol/L
As units of R are L.atm/mol.K, we have to convert the mmHg to atm
760 mmHg is 1 atm
28.1 mmHg is (28.1 .1)/760 = 0.0369 atm
0.0369 atm = M . 0.082 L.atm/mol.K . 293K
(0.0369 atm / 0.082 mol.K/L.atm . 293K) = M
0.0015 mol/L = Molarity
This data means the mol of solute in 1L, but we have 100mL so
Molarity . volume = mol
0.0015 mol/L . 0.1L = 1.5x10⁻⁴ mole
The molar mass will be: 0.102g / 1.5x10⁻⁴ m = 680 g/m
Answer:the atoms of a solid aluminium can are close together vibrating in a rigid structure if the can is warmed up on a hot plate
Explanation:
Answer:
9.00
Explanation:
Data:
[H⁺] = 1.0 × 10⁻⁹ mol·L⁻¹
Calculation:
pH = -log[H⁺] = -log(1.0 × 10⁻⁹) = -log(1.0) - log(10⁻⁹) = -0.00 - (-9) = -0.00 + 9 = 9.00
Answer:
See attachment.
Explanation:
Elements that are in the same group will definitely possess similar characteristics because they tend to have the same valence electron which determines their reactivity.
On a periodic table, elements in the same group can be found arranged on the same column in the periodic table.
Therefore the two elements that have similar characteristics are those two elements you can see on the same column in group 2. See the two elements indicated in the attachment below.
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L