The answer would be the 3. Mg + energy--> mg+ + e-
Ionization Energy is the amount of energy vital to eliminate the most loosely bond electron from an atom in the gas stage. Since Magnesium has a higher first energy which is 738 kj/mol, is the energy needed to remove the outermost, or highest energy.
Answer:
12CO2 (g) + 12H2O (l) ⇒ C12H24O12 (s) + 12O2
Explanation:
Start by comparing the moles of carbons on the left to number on the right. The number of moles on both side of the arrow should be the same.
D
This feature is formed at destructive boundaries where the denser plate (usually the oceanic plate) is subducted underneath the less dense plate (usually the continental plate).
Explanation:
the stress in the boundary between the two plates causes them to warp at the boundary forming a trench. This forced bending and the friction between the two plates (remember tectonic plates are very rugged) causes fissures to develop at the boundary. As the denser plate dives into the mantle, it begins to melt and the molten rock rises through the fissures. The magma erupts at the surface in several fissures forming volcanic mountains ranges along the convergent boundary.
Learn More:
brainly.com/question/13311967
brainly.com/question/13530753
brainly.com/question/13341884
brainly.com/question/949115
#LearnWithBrainly
Answer:
The correct answer is - sulfur.
Explanation:
In the periodic table, there are 18 groups and 7 rows or periods arranged according to their atomic number or electronic configuration. In the question, it is mentioned that the desired element atomic mass is less than the atomic mass of the selenium which is 78.96, and more than oxygen which is 15.99 with 6 electron valence and present in the third row.
As it has 6 valency of electron it must be in the 16 group of the table that comprises the 6 valency and as it is located in the 3rd row it must be sulfur that also has an atomic mass between selenium and oxygen.