Answer: Rate law=
, order with respect to A is 1, order with respect to B is 2 and total order is 3. Rate law constant is 
Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
![Rate=k[A]^x[B]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
k= rate constant
x = order with respect to A
y = order with respect to A
n = x+y = Total order
a) From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :![\frac{4.8\times 10^{-2}}{1.2\times 10^{-2}}=\frac{k[0.10]^x[0.40]^y}{k[0.10]^x[0.20]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%7B1.2%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.20%5D%5Ey%7D)
therefore y=2.
b) From trial 2:
(3)
From trial 3:
(4)
Dividing 4 by 3:![\frac{9.6\times 10^{-2}}{4.8\times 10^{-2}}=\frac{k[0.20]^x[0.40]^y}{k[0.10]^x[0.40]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B9.6%5Ctimes%2010%5E%7B-2%7D%7D%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.20%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D)
, x=1
Thus rate law is ![Rate=k[A]^1[B]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E2)
Thus order with respect to A is 1 , order with respect to B is 2 and total order is 1+2=3.
c) For calculating k:
Using trial 1: ![1.2\times 10^{-2}=k[0.10]^1[0.20]^2](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-2%7D%3Dk%5B0.10%5D%5E1%5B0.20%5D%5E2)
.
If the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
<h3>What is Charles's law?</h3>
Charles's law states that "the volume occupied by a definite quantity of gas is directly proportional to its absolute temperature.
It is expressed as;
V₁/T₁ = V₂/T₂
Given the data in the question;
- Initial temperature of gas T₁ = 100K
- Initial volume of gas V₁ = 300mL
- Final temperature T₂ = 200K
V₁/T₁ = V₂/T₂
V₂ = V₁T₂ / T₁
V₂ = ( 300mL × 200K ) / 100K
V₂ = 60000mLK / 100K
V₂ = 600mL
Therefore, if the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
Learn more about Charles's law here: brainly.com/question/12835309
#SPJ1
It is used when a slope is too steep or when there is no alternative method of preventing soil erosion. The most common crop<span> choices for </span>strip cropping<span> are closely sown crops such as hay, wheat, or other forages which are alternated with</span>strips<span> of row crops, such as corn, soybeans, cotton, or sugar beets.</span>
Answer:
The statement "Six turns of the cycle are required for every glucose molecule later produced in non–Calvin cycle reactions" is incorrect. It really looks not well-worded.
Explanation:
It is incorrect because Six turns of the cycle are required for every glucose molecule produced in Calvin cycle reactions, no in non-Calvin cycle reactions. This process includes the fixation of 6 molecules of carbon dioxide to produce 1 Glucose (seen as the addition of the two Phosphoglyceraldehide molecules (PGAL). Moreover, the other statements in the questions are correct:
ATP is required during carbon fixation.
The most intensive energy phase is reduction and sugar production.
Twelve NADPH are required for every six CO2 fixed.
NADPH is required for reduction and sugar production.