Answer:
The total weight of both object is 78.56 kg.
Explanation:
Given data:
Mass of object A = 45.1 kg
Mass of object B = 33.46 kg
Total weight of object = ?
Solution:
Total weight of both subject must be the sum of weight of object A and B.
Total weight of objects = weight of object A + weight of object B
Now we will put the values of mass of object A and B.
Total weight of objects = 45.1 kg + 33.46 kg
Total weight of objects =78.56 kg
Thus the total weight of both object is 78.56 kg.
Answer: There are 0.006 moles of acid in the flask.
Explanation:
Given: = 21.35 mL, = 0.150 M
= 25.0 mL, = ?
Formula used to calculate molarity of is as follows.
Substitute the values into above formula as follows.
As molarity is the number of moles of a substance present in a liter of solution.
Total volume of solution =
= 21.35 mL + 25.0 mL
= 46.36 mL (1 mL = 0.001 L)
= 0.04636 L
Therefore, moles of acid required are calculated as follows.
Thus, we can conclude that there are 0.006 moles of acid in the flask.
Answer:
E. potassium (K) and bromine (Br)
Explanation:
An ionic bond is formed between compounds with a large electronegativity difference between them. It is usually between a metal and non-metal.
- Potassium is a true metal found in group 1 on the periodic table.
- Bromine is a highly electronegative non-metal which is a halogen.
- Potassium will lose one of its electrons which will be gained by the Bromine.
- The electrostatic attraction between the two species will cause the ionic bond to form.
- The ability of one specie willing to lose electron and the other gaining, is the main bed rock of ionic bonding.
Answer:
B
Explanation:
follow the chart starting at the y axis go away from it at the level of 1 till you hit 100
Answer:
The atomic mass of methane (CH4)is 12 amu for the carbon plus 4 x 1 amu for the four hydrogens, for a total of 16 amu. Therefore, the molar mass of methane is 16g.