Answer:
Newton's second law states that when a body of mass m is accelerated with force f
then F=ma
this means acceleration of an object depends on both force with which it is moving as well as its mass
Answer:
The observer detects light of wavelength is 115 nm.
(b) is correct option
Explanation:
Given that,
Wavelength of source = 500 nm
Velocity = 0.90 c
We need to calculate the wavelength of observer
Using Doppler effect

Where, 


Hence, The observer detects light of wavelength is 115 nm.
Answer:
The phenomenon known as "tunneling" is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It's as if they simply evaded the "barrier" region by making a "tunnel" through it.
Explanation:
Answer:
Answer for the question is given in the attachment.
Explanation:
Answer: it depends on the mass of the pendulum or on the size of the arc through which it swings.
Explanation: