Answer:
Electrons are located in specific orbit corresponding to discrete energy levels
Explanation:
In Bohr's model of the atom, electron orbit the nucleus in specific levels, each of them corresponding to a specific energy. The electrons cannot be located in the space between two levels: this means that only some values of energy are possible for the electrons, so the energy levels are quantized.
A confirmation of Bohr's model is found in the spectrum of emission of gases. In fact, when an electron jumps from a higher energy level to a lower energy level, it emits a photon whose energy is exactly equal to the difference in energy between the two levels: since the energy levels are discrete, this means that the emitted photons cannot have any value of wavelength, but also their wavelength will appear as a discrete spectrum. This is exactly what it is observed in the spectrum of emission of gases.
Answer:
<h2>The answer is planetary motion</h2>
Explanation:
According to Johannes Kepler, the laws governing planetary motion
states that:
1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
2. A line segment joining a planet and the Sun sweeps out equal areas
during equal intervals of time.
3. The square of a planet's orbital period is proportional to the cube of the semi-major of its orbit.
Johannes Kepler was a German astronomer, mathematician, and astrologer
Born: 27 December 1571, Weil der Stadt, Germany
Died: 15 November 1630
Answer: The color is orange, the state of matter is liquid
Explanation:
Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C