1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
12

A stone is catapulted at time t = 0, with an initial velocity of magnitude 19.9 m/s and at an angle of 39.9° above the horizonta

l. What are the magnitudes of the (a) horizontal and (b) vertical components of its displacement from the catapult site at t = 1.03 s? Repeat for the (c) horizontal and (d) vertical components at t = 1.71 s, and for the (e) horizontal and (f) vertical components at t = 5.44 s. Assume that the catapult is positioned on a plain horizontal ground.
Physics
1 answer:
larisa [96]3 years ago
6 0

Answer:

Part a)

x = 15.76 m

Part b)

y = 7.94 m

Part c)

x = 26.16 m

Part d)

y = 7.49 m

Part e)

x = 83.23 m

Part f)

y = -75.6 m

Explanation:

As we know that catapult is projected with speed 19.9 m/s

so here we have

v_x = 19.9 cos39.9

v_x = 15.3 m/s

similarly we have

v_y = 19.9 sin39.9

v_y = 12.76 m/s

Part a)

Horizontal displacement in 1.03 s

x = v_x t

x = (15.3)(1.03)

x = 15.76 m

Part b)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(1.03) - 4.9(1.03)^2

y = 7.94 m

Part c)

Horizontal displacement in 1.71 s

x = v_x t

x = (15.3)(1.71)

x = 26.16 m

Part d)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(1.71) - 4.9(1.71)^2

y = 7.49 m

Part e)

Horizontal displacement in 5.44 s

x = v_x t

x = (15.3)(5.44)

x = 83.23 m

Part f)

Vertical direction we have

y = v_y t - \frac{1]{2}gt^2

y = (12.76)(5.44) - 4.9(5.44)^2

y = -75.6 m

You might be interested in
A coin and feather are dropped in a moon. what will fall earlier on ground.give reasons.if they are dropped in the earth,which o
Sergeeva-Olga [200]

Answer:

  • on the moon, they will fall at the time
  • on earth, the coin will fall faster to the ground

Explanation:

A coin and feather dropped in a moon experience the same acceleration due to gravity as small as 1.625 m/s², and because of the absence of air resistance both will fall at the same rate to the ground.

If the same coin and feather are dropped in the earth, they will experience the same acceleration due to gravity of 9.81 m/s² and because of the presence of air resistance, the heavier object (coin) will be pulled faster to the ground by gravity than the lighter object (feather).

4 0
2 years ago
PLEASE HURRYYYy THIS IS DUE IN 5 minutes!!!!!!
Vilka [71]

Answer:

there is no momentum

Explanation:

6 0
3 years ago
A block of concrete has a mass of 48kg a crane lifts the block to a height of 12m above the ground calculate the gravitational p
Afina-wow [57]

Answer:

5760 J

Explanation:

From the question given above, the following data were obtained:

Mass of block = 48 kg

Height (h) = 12 m

Gravitational field strength (g) = 10 N/Kg

Gravitational potential energy (PE) =?

The gravitational potential energy stored by the block can simply be obtained as follow:

PE = mgh

PE = 48 × 10 × 12

PE = 5760 J

Therefore, the gravitational potential energy stored by the block is 5760 J

3 0
3 years ago
Before the experiment, the total momentum of the system is 2.5 kg m/s to the right and the kinetic energy is 5J. After the exper
finlep [7]

Answer:

Option (b) is correct.

Explanation:

Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.

Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.

As given in the problem, before the collision, total momentum of the system is 2.5~Kg~m~s^{-1} and the kinetic energy is 5~J. After the collision, the total momentum of the system is  2.5~Kg~m~s^{-1}, but the kinetic energy is reduced to 4~J. So some amount of kinetic energy is lost during the collision.

Therefor the situation describes an inelastic collision (and it could NOT be elastic).

5 0
3 years ago
An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
vlada-n [284]

Answer:

v=2.02\frac{m}{s}

Explanation:

Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

K=U\\\frac{mv^2}{2}=\frac{kx^2}{2}

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

v=x\sqrt\frac{k}{m}\\v=2.63*10^{-2}m\sqrt{\frac{5.9*10^6\frac{N}{m}}{10^3kg}}\\v=2.02\frac{m}{s}

8 0
3 years ago
Other questions:
  • State guy lussac law
    7·1 answer
  • A dwarf planet discovered out beyond the orbit of Pluto is known to have an orbital period of 619.36 years. What is its average
    13·1 answer
  • Keaton is asked to solve the following physics problem:
    6·1 answer
  • Can someone help me a bit on this? Will mark brainliest. ( no physical science option soooo)
    11·1 answer
  • g Larry , Moe, and Curly are pushing on a 25 kg crate. The crate is sitting on a horizontal floor, and the coefficient of kineti
    11·1 answer
  • An equiconvex lens has power 4D. what will be the radius OF curvature of each
    13·1 answer
  • Write the total equation for the proton-proton chain reaction that takes place in stars?
    12·1 answer
  • A car runs along a horizontal path at speed of 20m/s.The driver observes the rain hitting his car at 60 to vertical.If rain is a
    12·1 answer
  • An object is placed 250 cm in front of a concave circular mirror, and the image of the object also appears at 250 cm in front of
    8·1 answer
  • Which of these statements best describes a double-replacement reaction?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!