Answer:
y = 3sin2t/2 - 3cos2t/4t + C/t
Step-by-step explanation:
The differential equation y' + 1/t y = 3 cos(2t) is a first order differential equation in the form y'+p(t)y = q(t) with integrating factor I = e^∫p(t)dt
Comparing the standard form with the given differential equation.
p(t) = 1/t and q(t) = 3cos(2t)
I = e^∫1/tdt
I = e^ln(t)
I = t
The general solution for first a first order DE is expressed as;
y×I = ∫q(t)Idt + C where I is the integrating factor and C is the constant of integration.
yt = ∫t(3cos2t)dt
yt = 3∫t(cos2t)dt ...... 1
Integrating ∫t(cos2t)dt using integration by part.
Let u = t, dv = cos2tdt
du/dt = 1; du = dt
v = ∫(cos2t)dt
v = sin2t/2
∫t(cos2t)dt = t(sin2t/2) + ∫(sin2t)/2dt
= tsin2t/2 - cos2t/4 ..... 2
Substituting equation 2 into 1
yt = 3(tsin2t/2 - cos2t/4) + C
Divide through by t
y = 3sin2t/2 - 3cos2t/4t + C/t
Hence the general solution to the ODE is y = 3sin2t/2 - 3cos2t/4t + C/t
Your answer: 2/3/2/9 = 0.037037037037037
They're all used for differentiating types of measurement in mathematics and science.
From the reference of the 18 degree angle, 'h' is the opposite side and 100 is the adjacent side.
The trig ratio which uses both the opposite and adjacent sides is the tangent.
tan(18) = opp/adj = h/100
Trig equation:
tan(18) = h/100
Answer: 340
Step-by-step explanation:
1360 / 4 = 340