For the neutralization process: an acid acts as a donor and donates protons to the base. On the other hand, the base acts as an acceptor and accepts the transferred protons. In a nutshell, neutralization is mainly proton transfer process.
As for the redox process: the oxidized material usually transfers electrons to the reduced material. In a nutshell, redox is mainly electron transfer process.
1) is called 3-methyl hexane because we choose the longest possible continuous chain which has 6 carbons and start numbering from the side that gives the branch lowest possible number.
2) is called 2-methyl-2-butene because we have to give the double bond lowest possible number but in this case double bond in position 2 from both sides so we start from the side gives the branch number 2 not 3
3) is called 7-Ethyl-4-decyne because we have to start from the side that gives the triple bond lowest possible number which is 4 and the branch will be at position 7 (note that the name of 10 carbon is incorrectly written in the choices is called decane (as alkane) or decyne when contains triple bond)
4) is called 2,3-Dimethyl pentane because it is 5 carbons (pentane) and we have two branches of the same alkyl (dimethyl) in positions 2 and 3
5) is called 1-Butanol because it contains 4 carbons and has one OH as functional group which take the suffix -ol in position 1 so we said the name as 1-butanol (remember to give the functional group lowest possible number)
6) is called propyl butyl ether because the longest chain is 4 carbons which called butyl and the smallest chain is propyl, it also has another name 1-Propoxy butane <span />
Given equation:
P + O2 → P2O5
In order for the equation to be balanced, the stoichiometry of the atoms of one kind on the reactant side must be equal to that on the product
Reactants Products
P = 1 P = 2
O = 2 O = 5
The balanced equation would be:
4P + 5O2 → 2P2O5
Reactants Products
P = 4 P = 4
O = 10 O = 10
Ans: D)
Answer:
The reaction will move to the left.
Explanation:
<em>Ba(OH)₂ = Ba²⁺ + 2OH⁻,</em>
<em>Ba(OH)₂ is dissociated to Ba²⁺ and 2OH⁻.</em>
- If H⁺ ions are added to the equilibrium:
H⁺ will combine with OH⁻ to form water.
<em>So, the concentration of OH⁻ will decrease and the equilibrium is disturbed.</em>
<em />
<em>According to Le Châtelier's principle: </em>when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- So, the reaction will move to the right to suppress the effect of decreasing OH⁻ concentration.
- The base will dissociate to form more OH⁻ and thus, the quantity of Ba(OH)₂ will decrease.
<em>So, the right choice is: the reaction will move to the left, is the choice that will not happen to the equilibrium.</em>