The energy needed to raise the temperature of 2.83 kg of the oil from 23 to 191 is calculated using Mc delta T formula
M= mass ( 2.83 Kg to grams = 2.83 x1000= 2830 grams)
C= specific heat capacity = 1.75 j/g/c
delta T= change in temperature = 191- 23 = 168 c
heat energy = 1.75 j/g/c x 2830 g x 168 c= 832020 J
Answer:
Electrolyte
Explanation:
The electrolyte does because it dissociates into ions.
Answer : The concentration of NaOH is, 0.336 M
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of NaOH is, 0.336 M
Answer: up to 4 other atoms.
Explanation:
- <em>Hybridization sp</em>³ means that the atom has 4 equal orbitals formed by the combination of 1 s and 3 p orbitals.
- Each of these sp³ orbitals is a place for a chemical bonding.
- Hence, since each orbital is able to bind a different atom, you conclude that <em>a central atom that is sp³ hydridized could bind up to 4 other atoms.</em>
This is precisely the case for carbon (C) atoms.
Carbon has atomic number 6. So its electron configuration is 1s² 2s²p².
The four electrons in the level 2, those shown in 2s² 2p², are in two different orbitals: two are in the orbital 2s and two are in the orbitals 2p.
This diagram shows how those 4 electrons fill the orbitals
The two 2s electrons have lower energy level than the 2px and 2 py electrons, but the difference is not too big.That is why one of the electrons in the 2s ortital can be promoted to the empty 2pz orbital, and you get 4 equal hydridized ortibals, so called sp³.
And that is why, carbon (C) ends up with 4 equal (hydridized) orbitals which can bind up to 4 different atoms, including other carbon atoms, and so, form long chains and, virtually, infinite compounds.
Explanation:
In a magnetic field, the radius of the charged particle is as follows.
r = 
where, m = mass, v = velocity
q = charge, B = magnetic field
Therefore, q will be calculated as follows.
q = 
= 
= 
= 
= +2e
Thus, we can conclude that the charge of the ionized atom is +2e.