Answer:
Lose two electrons.
Explanation:
Barium is present in group 2.
It is alkaline earth metal.
Its atomic number is 56.
Its electronic configuration is Ba₅₆ = [Xe] 6s².
In order to attain the noble gas electronic configuration it must loses its two valance electrons.
When barium loses it two electron its electronic configuration will equal to the Xenon.
The atomic number of xenon is 54 so barium must loses two electrons to becomes equal to the xenon.
The lighter components are able to rise higher in the column before they are cooled to their condensing temperature, allowing them to be removed at slightly higher levels.
I hope this helps
STP is abbreviation for Standard Temperature and Pressure at which the temperature is 273 K and pressure is 1 atm
- At these conditions the molar volume is equal to 22.4 L
so 1 mole of SO₂ volume = 22.4 L
? mole of SO₂ volume = 2.5 L
number of moles = 2.5 / 22.4 = 0.1116 mol
mass of SO₂ = 0.1116 * 64.063 = 7.15 g
Answer:
Both require time, but velocity requires displacement and speed requires distance
Explanation:
For calculating speed we require time and distance because speed is defined as the distance per unit time and as speed is a scalar quantity it does not have any direction
But for calculating the velocity we require time as well as displacement because velocity is defined as the displacement per unit time and as velocity is a vector quantity it has direction
Displacement is the shortest distance between the initial position and the final position and it has a specified direction as well
Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.