1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
3 years ago
10

An initially stationary electron is accelerated by a uniform 640 N/C Electric Field. a) Calculate the kinetic energy of the elec

tron after it has traveled 15 cm in a direction parallel to this field. b) Calculate the speed of the electron after it has traveled 15 cm in a direction parallel to this field.
Physics
1 answer:
Greeley [361]3 years ago
4 0

Answer:

(a) 1.298 * 10^(-4) J

(b) 5.82 * 10^6 m/s

Explanation:

Parameters given:

Electric field, E = 640 N/C

Distance traveled by electron, r = 15 cm = 0.15 m

Mass of electron, m = 9.11 * 10^(-31) kg

Electric charge of electron, q = 1.602 * 10^(-19) C

(a) The kinetic energy of the electron in terms of Electric field is given as:

K = (q² * E² * r²) / 2m

Therefore, Kinetic energy, K, is:

K = [(1.602 * 10^(-19))² * 640² * 0.15²] / [2 * 9.11 * 10^(-31)]

K = {23651.981 * 10^(-38)} / [18.22 * 10^(-31)]

K = 1298.13 * 10^(-7) J = 1.298 * 10^(-4) J

(b) To find the final velocity of the electron, we have to first find the acceleration of the electron. This can be gotten by using the equations of force.

Force is generally given as:

F = ma

Electric force is given as:

F = qE

Therefore, equating both, we have:

ma = qE

a = (qE) / m

a = (1.602 * 10^(-19) * 640) / (9.11 * 10^(-31))

a = 112.54 * 10^(12) m/s² = 1.13 * 10^(14) m/s²

Using one of the equations of motion, we have that:

v² = u² + 2as

Since the electron started from rest, u = 0 m/s

Therefore:

v² = 2 * 1.13 * 10^(14) * 0.15

v² = 3.39 * 10^(13)

v = 5.82 * 10^6 m/s

The velocity of the electron after moving a distance of 15 cm is 5.82 * 10^6 m/s.

You might be interested in
The vibrations along a transverse wave move in a direction _________.
GrogVix [38]

Answer: perpendicular to it oscillations.

Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.

By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.

Examples of transverse waves includes wave in a string, water wave and light.

Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.

If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.

Since the oscillations is perpendicular to the direction of wave, it is a transverse wave

5 0
3 years ago
a school bus has stopped to allow children to get off the bus which graph shows the motion of the bus?​
Usimov [2.4K]

Answer: what is it in

Explanation:

4 0
3 years ago
Why might a balloon, that is inflated almost to its capacity, pop or explode on an extremely warm day?
REY [17]
On an extremely warm day, the balloon might pop because gases expand the hotter they get, and due to its temperature it is likely to pop if it is, indeed, nearly, if not completely, filled to its capacity.  I hope this helps, have a nice day!
7 0
3 years ago
Read 2 more answers
A 47.2 kg girl is standing on a 177 kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat,
Softa [21]

Answer:

v_g,i = 1.208 m/s

Explanation:

We are given;

Mass of girl; m_g = 47.2 kg

Mass of plank; m_p = 177 kg

Let the velocity of girl to ice be v_g,i

Let the velocity of plank to ice be v_p,i

Since the velocity of the girl is 1.53 m/s relative to the plank, then;

v_g,i + v_p,i = 1.53

From conservation of momentum;

m_g × v_g,i = m_p × v_p,i

Thus;

47.2(v_g,i) = 177(v_p,i)

Dividing both sides by 47.2 gives;

v_g,i = 3.75(v_p,i)

v_pi = (v_g,i)/3.75

Thus, from v_g,i + v_p,i = 1.53, we have;

v_g,i + ((v_g,i)/3.75) = 1.53

v_g,i(1 + 1/3.75) = 1.53

1.267v_g,i = 1.53

v_g,i = 1.53/1.267

v_g,i = 1.208 m/s

5 0
3 years ago
(4.56 x 10^-13)-(1.17 x 10^-13)
avanturin [10]
3.39 x 10^-13

Please mark brainliest!
3 0
3 years ago
Other questions:
  • Approximately what core temperature is required before hydrogen fusion can begin in a star?
    8·1 answer
  • A body moving with a velocity of 20m/s begins to accelerate at 3 m/s 2 . How far does the body move in 3 seconds
    8·1 answer
  • Spiderman, whose mass is 74.0 kg, is dangling on the free end of a 11.0-m-long rope, the other end of which is fixed to a tree l
    11·1 answer
  • Rosa is riding her bike at 15 mph toward school. Select all of the following statements that correct describe her motion.
    6·2 answers
  • Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black
    6·1 answer
  • A wave on a string is described by Y(x, t) : 15.0 sin( nclS - 4rrt),, where x and y are in centimeters and / is in seconds. (a)
    10·1 answer
  • How are traits influenced by the environment? (No links)
    15·1 answer
  • Please Help Quick ASAP Hurry This is Physical Science
    15·1 answer
  • Construct c = a + b by drawing and calculating the direction and magnitude of c. The direction should be
    10·1 answer
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!