Answer:
I = 0.002593 A = 2.593 mA
Explanation:
Current density = J = (3.00 × 10⁸)r² = Br²
B = (3.00 × 10⁸) (for ease of calculations)
The current through outer section is given by
I = ∫ J dA
The elemental Area for the wire,
dA = 2πr dr
I = ∫ Br² (2πr dr)
I = ∫ 2Bπ r³ dr
I = 2Bπ ∫ r³ dr
I = 2Bπ [r⁴/4] (evaluating this integral from r = 0.900R to r = R]
I = (Bπ/2) [R⁴ - (0.9R)⁴]
I = (Bπ/2) [R⁴ - 0.6561R⁴]
I = (Bπ/2) (0.3439R⁴)
I = (Bπ) (0.17195R⁴)
Recall B = (3.00 × 10⁸)
R = 2.00 mm = 0.002 m
I = (3.00 × 10⁸ × π) [0.17195 × (0.002⁴)]
I = 0.0025929449 A = 0.002593 A = 2.593 mA
Hope this Helps!!!
It slows down. The molecules/particles aren't as close together, resulting in slower movement.
Double tap, zoom in.
please vote my answer brainliest. thanks!
Answer:
V = 156.85 Km/h
Explanation:
Speed of plane = 125 Km/h
angle of plane= 25° N of E
Speed of wind = 36 Km/h
angle of plane = 6° S of W
Horizontal component of the velocity
V_x = 125 cos 25° + 36 cos 6°
V_x = 149 Km/h
Vertical component of the velocity
V_y = 125 sin 25° - 36 sin 6°
V_y = 49 Km/h
Resultant of Velocity


V = 156.85 Km/h
the resulting velocity of the plane is equal to V = 156.85 Km/h