Answer:
glucose → NADH → electron transport chain → oxygen.
Explanation:
Aerobic respiration is also called as cellular respiration, in which electrons are picked up by the FADH, and NADH from the food. Then through a proton pump electrons are transferred to the electron transport chain, in this, the activity of the proton pump generates an electrochemical gradient, then this gradient used by the ATP synthase enzyme to produce ATP.
In aerobic respiration, the last acceptor of electron is oxygen. An electron is donated to oxygen for the formation of the water.
B = 0.018 T Ans,
Since, it is moving in a circular path, thus, centripetal force will act on it i.e.
F =

where, m is the mass of the object, v is the velocity and r is the radius of circular path.
And, since a positive charge is moving, it will create magnetic force which is equal to F = qvB
where q is the charge, v is the velocity of the particle and B is the magnetic field.
Now, the two forces will be equal,
i.e.

= qvB
⇒

= qB
⇒B =

<span>putting the values, we get,
</span>
use q = 1.6 * 10^ -19
⇒ B = 0.018 T
Plant cells are eukaryotic cells that differ in several key aspects from the cells of other eukaryotic organisms. number two sry but Idk
:(
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
I believe d all of the above