It is called surface tension it is the elastic personality of some liquids as they pull together to take up as little surface area as possible. the water molecules would rather stay together than be pulled apart<span />
Here refrigerator removes 55 kcal heat from freezer
Refrigerator releases 73.5 kcal heat to surrounding
So here we can use energy conservation principle by II Law of thermodynamics
the law says that

here we know that
= heat released to the surrounding
= heat absorbed from freezer
W = work done by the compressor
now using above equation we can write



So here compressor has to do 18.5 k cal work on it
Answer:
1.
2.
3.The results from part 1 and 2 agree when r = R.
Explanation:
The volume charge density is given as

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.
1. Since the cylinder is very long, Gauss’ Law can be applied.

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

where ‘h’ is the length of the imaginary Gaussian surface.

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

3. At the boundary where r = R:

As can be seen from above, two E-field values are equal as predicted.
I am walking to the end of the room holding three textbooks.
Playing tug of war
Moving boxes to move out of your house
Answer:
Hello the diagram related to your question is attached below
answer: a) 851 m/s
b) 8506.1 secs
Explanation:
calculate the periodic time of the satellite using the equation below
t =
-- ( 1 )
where ; R = 6370 km
h = 500 km
g = 9.81 m/s^2
input given values into equation 1
t = 5670.75 secs
next calculate the periodic time taken by the space craft
<u>a) determine the increase in speed </u>
V = v -
where ; v = 8463 m/s , R = 6370 km, h = 500 km
V = 851 m/s
b) Determine the periodic time for the elliptic orbit
τ = 
=
= 8506.1 secs
attached below is the remaining part of the detailed solution