To solve this problem, we have to use the formula:
E = h f
where E is total energy, h is Plancks constant
6.626x10^-34 J s, f is frequency
f = E / h
f = 3.686 × 10−24 J / (6.626x10^-34 J s)
<span>f = 5.56 x 10^9 Hz</span>
What did the protoplanets become?
a. nebulae
b. planets
c. solar nebulae
d. planetesimals
The protoplanets
become nebulae. The answer is letter A. The
rest of the choices do not answer the question above.
Answer:
- Which of the following does not move as a transverse wave?
<em>B. sound waves</em>
because sound waves are longitudinal waves having compressions and rare factions.
Which of these effects describes the change in pitch we hear
moving motorbike goes past?
<em>D</em><em>.</em><em> </em><em>Doppler</em><em> </em><em>eff</em><em>ect</em>
Doppler effect is the phenomenon where there is apparent change in frequency (pitch) and wavelength of a wave due to relative motion of the sound source.
Which of the following does not make use of total internal reflection.
<em>B</em><em>.</em><em> </em><em>Endos</em><em>cop</em><em>e</em>
Endoscope doesn't use total internal reflection since no refraction takes place.
Answer:
The work done on the hose by the time the hose reaches its relaxed length is 776.16 Joules
Explanation:
The given spring constant of the of the spring, k = 88.0 N/m
The length by which the hose is stretched, x = 4.20 m
For the hose that obeys Hooke's law, and the principle of conservation of energy, the work done by the force from the hose is equal to the potential energy given to the hose
The elastic potential energy, P.E., of a compressed spring is given as follows;
P.E. = 1/2·k·x²
∴ The potential energy given to hose, P.E. = 1/2 × 88.0 N/m × (4.20 m)²
1/2 × 88.0 N/m × (4.20 m)² = 776.16 J
The work done on the hose = The potential energy given to hose, P.E. = 776.16 J
Risk of return on investment is higher than other forms of energy generation.