1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
3 years ago
13

You are concerned about the moon roof on your new sports car. It seems to flex when driving at high speeds. Calculate how much n

et force the moon roof must withstand and in what direction. Assume the moon roof is flat with an area of 0.5 m^2 and the pressure and velocity over the moon roof is constant. Your driving speed is 20 m/s, and the velocity over the moon roof is 30 m/s. The pressure inside the car is 90,500 N/m^2 and the freestream pressure and density in front of the car are 90,000 N/m^2 and 1.1 kg/m^3.
Physics
1 answer:
Annette [7]3 years ago
4 0

Answer:

Explanation:

We shall apply Bernoulli's formula to solve the problem . It is as follows .

P + ρ gh + 1/2 ρ v² = constant .

P₁ + ρ gh + 1/2 ρ v₁²  = P₂ + ρ gh + 1/2 ρ v₂²

P₁ +  1/2 ρ v₁²  = P₂  + 1/2 ρ v₂²

P₁ - P₂ = 1/2 ρ (v₂² - v₁² )

= .5 x 1,1 ( 30² - 20² )

= 275 N / m²

velocity over moon roof is high , pressure will be lower there by 275 N / m²

Given pressure difference already existing = 90500 - 90000 = 500 N / m²

Additional pressure difference due to velocity difference = 275 N / m²

Total pressure difference = 275 + 500 = 775 N / m²

Area of roof = .5 m²

Total force acting upwards on the roof

= .5 x 775 N

= 387.5 N .

You might be interested in
What is mechanical energy​
netineya [11]

Explanation:  

In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the macroscopic energy associated with a system. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.

3 0
3 years ago
Read 2 more answers
A pendulum is made up of a small sphere of mass 0.500 kg attached to a string of length 0.950 m. The sphere is swinging back and
Semenov [28]

Answer:

W = 0.842 J

Explanation:

To solve this exercise we can use the relationship between work and kinetic energy

         W = ΔK

In this case the kinetic energy at point A is zero since the system is stopped

         W = K_f                (1)

now let's use conservation of energy

starting point. Highest point A

          Em₀ = U = m g h

Final point. Lowest point B

         Em_f = K = ½ m v²

energy is conserved

         Em₀ = Em_f

         mg h = K

to find the height let's use trigonometry

at point A

            cos 35 = x / L

            x = L cos 35

so at the height is

            h = L - L cos 35

            h = L (1-cos 35)

we substitute

           K = m g L (1 -cos 35)

we substitute in equation 1

           W = m g L (1 -cos 35)

let's calculate

           W = 0.500 9.8 0.950 (1 - cos 35)

           W = 0.842 J

7 0
3 years ago
A boy on a 1.9 kg skateboard initially at rest tosses a(n) 7.8 kg jug of water in the forward direction. if the jug has a speed
Tresset [83]
For this case we first think that the skateboard and the child are one body.
 We have then:
 1 = jug
 2 = skateboard + boy
 By conservation of the linear amount of movement:
 M1V1i + M2V2i = M1V1f + M2V2f
 Initial rest:
 v1i = v2i = 0
 0 = M1V1f + M2V2f
 Substituting values
 0 = (7.8) (3.2) + (M2) (- 0.65)
 0 = 24.96 + M2 (-0.65)
 -24.96 = (-0.65) M2
 M2 = (-24.96) / (- 0.65) = 38.4 kg
 Then, the child's mass is:
 M2 = Mskateboard + Mb
 Clearing:
 Mb = M2-Mskateboard
 Mb = 38.4 - 1.9
 Mb = 36.5 Kg
 answer:
 the boy's mass is 36.5 Kg
4 0
3 years ago
What happens if you move a bar magnet back and forth along the axis of the
nadezda [96]

C) A current is induced in the coiled wire, which lights the light bulb

The moving magnetic field creates electricity which lights the light bulb

Hope it helps!

8 0
2 years ago
Read 2 more answers
When you jump straight up as high as you can, what is the order of magnitude of the maximum recoil speed that you give to the Ea
Klio2033 [76]

Answer:

5.66 × 10⁻²³ m/s

Explanation:

If i assume i can jump as high as h = 2 m, my initial velocity is gotten from v² = u² + 2gh. Since my final velocity v = 0, u = √2gh = √(2 × 9.8 × 2) = √39.2 m/s = 6.26 m/s.

Since initial momentum = final momentum,

mv₁ + MV₁ = mv₂ + MV₂ where m, M, v₁, V₁, v₂ and V₂ are my mass, mass of earth, my initial velocity, earth's initial velocity, my final velocity and earth's final velocity respectively.

My mass m = 54 kg, M = 5.972 × 10²⁴ kg, v₁ = 6.26 m/s, V₁ = 0, v₂ = 0 and V₂ = ?

So mv₁ + M × 0 = m × 0 + MV₂

mv₁ = MV₂

V₂ = mv₁/M =  54kg × 6.26 m/s/5.972 × 10²⁴ kg = 338.093/5.972 × 10²⁴ = 56.61 × 10⁻²⁴ m/s = 5.661 × 10⁻²³ m/s ≅ 5.66 × 10⁻²³ m/s

5 0
3 years ago
Other questions:
  • Tom has a mass of 67.1 kg and Sally has a mass of 58.6 kg. Tom and Sally are standing 32.3 m apart on a massless dance floor. Sa
    13·1 answer
  • Newton's second law states that the force produced by a moving object depends on its mass and acceleration. Which is an example
    9·1 answer
  • In which of these positions will earth move the fastest
    7·1 answer
  • What happens to baseball cap in the rain?
    15·1 answer
  • russell westbrook has a mass of 84.8kg.When jumps to dunk on z 3.04 meter goal,what will be his G.P.E at the apex of his jump?
    6·1 answer
  • Q3. What is the minim value of refractive index?
    14·2 answers
  • Which of the following best describes the circuit shown below?
    12·2 answers
  • A ship is flying away from Earth at 0.9c (where c is the speed of light). A missile is fired that moves toward the Earth at a sp
    14·1 answer
  • Which of the following is a physical state of matter? *<br> A mass<br> B volume<br> C liquid
    9·1 answer
  • Please help. Brainliest!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!