Answer:
i dont really nnow the answer so byee
It goes in this order. Medium, density, viscosity
Answer:
0.001152m
Explanation:
Linear expansivity of a material is the change in length of the material per unit length per degree rise in temperature. Mathematically,
¢ = ∆L/L1∆°C
¢ is the linear expansivity of the material = 12 x 10⁻⁶ °C⁻¹
Where ∆L is the change in length = L2-L1
L2 is the final length = ?
L1 is the initial length = 12m
∆°C is the change in temperature = °C2 - °C1 = 50-(-30) = 80°C
Substituting this values inside the formula to get the final length L2 after expansion, we have;
12 x 10⁻⁶ °C⁻¹ = L2-12/12×80
12 x 10⁻⁶ °C⁻¹ = L2-12/960
L2-12= 960×12 x 10⁻⁶ °C⁻¹
L2-12 = 0.001152
L2 = 12+0.001152
L2 = 12.001152m
Expansion will be the change in length L2-L1 = 12.001152-12
= 0.001152m
The expansion cracks between the slabs should be 0.001152m wide to prevent buckling
Answer:
ρ=0.0102lbm/ft^3
Explanation:
To solve this problem we must take into account the equation of continuity, this indicates that the sum of the mass flows that enter a system is equal to the sum of all those that leave.
Therefore, to find the mass flow of exhaust gases we must add the mass flows of air and fuel.
m=0.59+60=60.59lbm/s( mass flow of exhaust gases)
The equation that defines the mass flow (amount of mass that passes through a pipe per unit of time) is as follows
m=ρVA
Where
ρ=density
V=velocity
m=mass flow
A=cross-sectional area
solving for density
ρ=m/VA
ρ=60.59/{(1485)(4)}
ρ=0.0102lbm/ft^3
the answer is Yes because your reaction will be an action